24小时服务热线:

400-8838-798

技术文章

含氯挥发性有机化合物催化燃烧反应中 非贵金属氧化物催化剂的研究进展

2020-02-12 14:38:00 东莞市中仁环境科技有限公司 阅读

摘要:催化燃烧是实现含氯挥发性有机化合物( CVOC) 高效净化的处理技术。CVOC 催化燃烧非贵金属催化剂主要有单组份氧化物、复合氧化物及钙钛矿型催化剂。催化剂活性及稳定性主要与氧化物中氧的传递能力有关。氧化物催化剂上,CVOC 催化燃烧反应机理为酸位吸附脱卤- 催化燃烧综合机理,L 酸对Cl 的脱除能力弱于B 酸。

近年来,我国的大气污染日趋严重,污染物种类逐渐多样化,挥发性有机物( VOCs) 已成为大气污染的重要源头。VOCs 是指常温下饱和蒸汽压大于70 Pa,常压下沸点260 ℃以下的有机化合物,包括烷烃、芳烃、烯烃、卤烃、酯、醛、酮等,主要来源于工业生产、汽车尾气及日常生活。VOCs 对生存环境危害较大,长时间接触会引发肺部疾病等。在室外环境下,VOCs 气体易产生气溶胶,改变大气性质。随着国家越来越重视环保问题,对VOCs 排放的控制逐渐严格。

目前,含氯挥发性有机化合物( CVOC) 作为VOCs 的重要组成部分广泛存在于各个领域,如机械制造、石油化工、制药、喷涂涂料行业。CVOC 在使用的过程中通过挥发、泄露、排放等途径进入环境中,造成臭氧层破坏、光化学烟雾和全球变暖; 此外,CVOC 分子中的Cl 元素电负性很强,在自然界中游离性状态下难以被生物降解,易在生物体内累积,具有很强的“三致作用”。CVOC 的净化治理技术主要包括焚烧法、冷凝法、生物法、催化燃烧法等。其中,催化燃烧技术适用于低浓度废气的处理,具有低能耗、效率高以及无二次污染物等优点,广泛应用于实际生产中。催化燃烧技术的核心是催化剂的开发,催化剂可分为贵金属催化剂( 如Pt、Au、Pd 等)和非贵金属催化剂( 如Cu、Mn、Co 等) 。在实际应用中,贵金属催化剂在水蒸气和卤素存在的情况下,易中毒失活。因此,CVOC 的催化燃烧主要使用非贵金属催化剂。本文主要综述CVOC 净化处理中非贵金属催化剂的应用进展。

1 CVOC 净化技术现状

目前,国内外CVOC 净化技术主要有直接燃烧法和催化燃烧法。直接燃烧法适用于高浓度CVOC净化,催化燃烧法适用于低浓度CVOC 净化,净化处理后的废气通过水洗装置除去最终产物Cl2或HCl。CVOC 催化氧化催化剂主要有贵金属催化剂和非贵金属催化剂两类。贵金属催化剂活性组分主要为Pt、Pd、Rh 等,贵金属催化剂具有抗水性好、抗硫性能优异等优点,但实际使用过程中,存在使用成本高、贵金属元素分散性要求较高、高温下容易团聚等

缺点。非贵金属材料成本远低于贵金属催化剂,在反应机理上有较多的研究空间。

目前,非贵金属催化剂的活性组分是氧化物,如氧化铈、氧化锆、氧化锰、氧化铜、氧化铝等,对于该类催化剂在非CVOC 中的催化燃烧,文献较多。但该类催化剂对CVOC 污染物净化的报道相对较少,从发现氧化物催化剂对CVOC 具有很好的催化燃烧效果后,研究者对氧化物催化剂进行深入研究,探寻CVOC 催化燃烧反应本质。

2非贵金属氧化物催化剂对CVOC 催化燃烧作用的研究现状

非贵金属催化剂虽然成本上优于贵金属催化剂,但用于CVOC 催化燃烧时,活性位容易被占据、积炭,导致活性的耐久性、抗硫性、抗水性较差等问题。如何实现在不中毒的状态下改变反应机理,保持对卤素有机物的催化燃烧效率,是当前研究的热点

2.1单组份氧化物催化剂

根据单组份氧化物催化剂在催化性能上的差异,可以将其分为单组份过渡氧化物催化剂和单组份酸性氧化物催化剂两种。单组份过渡氧化物催化剂活性组分主要有Ce、Mn、Cu、La 等,其中Mn、Cu、V、Ce 等活性较好,这主要是由于这些元素具有良好的氧传递能力。

宋灿等采用牺牲模板、水热合成等方法制备不同形状的Mn3O2,探讨其对氯苯的降解效果,发现催化剂的比表面积和表面氧的移动对催化活性起重要作用,催化活性顺序为空心立方体> 核壳体> 纳米棒体,比表面积较大的催化剂可以为催化反应提供更多的反应活性中心。表面氧的流动情况越好,催化剂易还原,催化性能越优。

Lopez - Fonseca R 等研究不同酸性分子筛( H - Y,H - ZSM - 5 和H - MOR) 对二氯乙烷的催化燃烧能力的影响,发现几种分子筛都具有很好的催化氧化作用。

Zhang L L 等制备Na 型、H 型沸石催化剂,研究其对二氯甲烷的催化燃烧作用,发现Na 型沸石分子筛催化剂对二氯甲烷的催化活性较高,这可能与Na 表面的碱性或者表面羟基有较大的关系。DaiQ 等报道HZSM - 5 和一系列H - 型分子筛催化剂对二氯甲烷的催化燃烧性能,与H - 型分子筛相比,HZSM - 5 具有独特的三维结构孔道、稳定性高、比表面积高、HCl 选择性高,具有较好的低温催化燃烧活性。

2.2复合氧化物催化剂

复合氧化物催化剂是由多种活性氧化物通过某种制备手段形成的一种混合氧化物。针对单组份氧化物催化剂的不足,通过掺杂或添加载体可以提高催化剂的氧化和抗氯中毒能力。He Chi 等通过共沉淀法制备添加Ce 的Cu0. 15 Mn0. 15 Ce0. 7 Ox氧化物,结果表明,Cu0. 15Mn0. 15Ce0. 7Ox氧化物的催化活性优于未改性CuMn 催化剂,反应温度250 ℃下,氯苯降解率达到90%。同样,He F 等采用均相沉淀法制备了MnOx /TiO2、CeOx /TiO2、CeOx - MnOx /TiO2催化剂,结果表明,CeOx - MnOx /TiO2催化剂活性好,这主要是因为Ce 氧化物和Mn 氧化物形成固溶体,提高反应活性氧的传动能力。

 添加特殊元素( 如Al) 可提高复合氧化物催化剂的CVOC 净化活性。Rozdyalovskaya T 等采用浸渍法在V2 O5、CuCl、V2 O5 - CuCl 中添加氧化铝。结果表明,V - Cu - Al 体系对氯苯的净化效果最佳。Ma Ruihong 等采用沉积- 沉淀法制备了CrOx /Al2O3催化剂,发现其对二氯甲烷的催化燃烧性能随着Cr 价态的增加而提升,Cr6 + 的催化燃烧性能最优。

氧化物催化剂中添加助剂,如分子筛、金属氧化物、蜂窝陶瓷( 一般为堇青石) ,可以提高活性组份的分散,在实际应用中,降低催化剂的使用成本。Michalik - zym A 等考察了Ti - PILC( 柱型蒙脱石黏土) 负载型Pd 和Cr 催化剂对二氯甲烷和三氯乙烯的催化燃烧性能,发现Cr /Ti - PILC 催化剂比贵金属催化剂具有更好的还原性能。孙忠等制备了堇青石La0. 8Sr0. 2MnO3陶瓷基Ce - Zr 氧化物催化剂,发现该催化剂对氯烃的降解能力高于对有机酸、芳烃的降解。

2.3钙钛矿型氧化物催化剂

钙钛矿型催化剂一般由稀土元素和碱金属元素氧化物复合而成,结构上易存在晶体结构缺陷。LuY J 等采用共沉淀法制备5 种钙钛矿型催化剂LaMnO3、La0. 8MnO3、La0. 8 Sr0. 2MnO3、LaMn0. 8Al0.2O3、LaMn0. 8Fe0. 2O3。结果发现,添加Sr 的催化剂对氯苯具有很好的催化活性,反应温度291 ℃时,氯苯转化率达到90%。刘亚芹等对La0. 8 Sr0. 2MnO3催化剂进行研究,发现催化剂在反应温度350 ℃下具有良好的活性,稳定性达到100 h,未出现积碳。

3非贵金属氧化物催化剂上CVOC 催化燃烧机理

CVOC 催化燃烧是气固相反应,反应过程可分为两个阶段。首先,CVOC 中的卤素吸附在催化剂表面,经过催化脱除作用,生成卤化氢气体,该过程影响催化剂活性和使用寿命。若卤素在脱附过程中不能完全脱除,卤素基团吸附聚积在催化剂活性位上,引起催化剂中毒。其次,CVOC 中C—H 键在高温下进行催化氧化,生成二氧化碳和水。目前,CVOC 催化燃烧反应机理几乎都是酸位吸附脱卤-催化燃烧机理。

3.1氧化物催化剂上CVOC 催化燃烧机理

氧化物( 如分子筛、氧化铝等) 催化剂上,CVOC的污染物分子优先吸附在氧化物表面的B 酸位,形成中间物种,之后与氧发生反应,生成最终产物HCl。HCl 的量比较少时,可能发生Deacon 反应形成Cl2。以C2H4Cl2为例[5],反应过程为:

1581489494763387.jpg

3.2复合氧化物上CVOC 催化燃烧机理

Gutierrez - Ortiz J I 等认为Cex Zr1 - x O2催化剂上二氯乙烯催化氧化反应主要分为两步,含氯分子在强酸位的吸附是最关键的一步。文献提出B、L 酸位上二氯乙烯催化燃烧具有不同的表面反应机理:

1581489523984870.jpg

Petit C 等研究了钙钛矿型催化剂上二氯甲烷的催化燃烧机理,认为催化剂的B 酸位为活性中心,二氯甲烷首先在活性中心上吸附和反应,脱除HCl,生成吸附态的甲醛物种。文献报道了1,2- 二氯乙烷的催化燃烧反应机理:

3.jpg

3.3CVOC 催化燃烧机理的其他研究

Cen W L 等报道了水蒸汽对氧化铈催化剂上CVOC 催化燃烧性能的影响。结果表明,反应过程中催化剂表面形成H—O—O 基团,提高HCl 选择性。Lopez - Fonseca R 等也得出了类似的结论。Bertinchamps F 等认为水蒸汽的加入对Cl2有一定的去除效果,但降低了催化剂表面的B酸位。

催化剂的失活研究也可以间接的探讨CVOC 催化燃烧反应机理。McMinn T E 等报道Pt /γ -Al2O3的中毒机理。结果表明,当转化率低于一定值时,未转化的含氯烃在催化剂孔道内生成中间产物,这些中间产物反应形成大量的聚合物和积炭; 若转化率维持在较高水平,则生成的聚合物很少。AbdullahA Z 等报道在CVOC 催化氧化过程中催化剂活性下降,但仅发现微量积碳,研究者认为催化剂失活的原因是催化剂与氯发生相互作用,Cl 表面的孤对电子具有强吸电子能力,容易与邻对原子形成化学键,生成含氯金属基团,导致催化剂活性下降。

4结语与展望

(1) CVOC 催化燃烧反应中,复合氧化物催化剂、钙钛矿催化剂活性和稳定性强于单组份氧化物,主要原因在于多组分氧化物中氧的传递能力( 或酸性性质) 优于单组份氧化物。

(2)氧化物催化剂上,CVOC 催化燃烧反应机理为酸位吸附脱卤- 催化燃烧综合机理,L 酸和B酸位对CVOC 中Cl 的脱除能力不同,一般L 酸对Cl的脱除能力弱于B 酸位,导致催化燃烧机理出现差异。

(3)增加反应体系湿度可以减弱催化剂的中毒效应,提高HCl 选择性,但降低了催化剂的B 酸位。催化剂活性组份的分散程度对CVOC 的降解有一定的影响,在催化剂中添入助剂( 分子筛、金属氧化物、蜂窝陶瓷) ,可以明显提高活性组份的分散,提高催化剂性能。

(4)非贵金属催化剂经济性较好,但目前只停留在试验阶段,仅从基本表征数据的关联性上探讨反应机理,较少深入研究,催化剂的抗硫、中毒机理研究较少。为提高催化剂活性、稳定性,还需要多角度、深层次的探索,在催化剂的微观物理化学性质上得到突破,有效提高非贵金属氧化物催化剂对CVOC 的净化效率,以便更好的在工业中得到应用。

来源:北极星VOCs在线



标签:   催化燃烧